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AN APPROXIMATE ANALYTICAL SOLUTION OF THE
PROBLEM OF PROPAGATION OF A FILTRATION
COMBUSTION WAVE IN A POROUS MEDIUM

S. I. Fut’ko, S. I. Shabunya, and UDC 536.46
S. A. Zhdanok

Within the one-dimensional single-temperature model, approximate analytical expressions are obtained for
determination of the heat wave propagation velocity and the maximum temperature at the combustion front.
The present results are compared with the results of the Zel dovich— Frank-Kamenetskii asymptotic theory.

When a combustible-gas—air mixture filters through an inert porous medium, self-sustaining wave regimes
can be observed under certain conditions. To initiate this type of process, it is sufficient to create a narrow high-
temperature zone in the porous medium with the aid of an external source (for example, an electric heater) switched
on for a time. Subsequently, in the porous medium temperature profiles are formed that propagate at a constant
velocity that can be both positive and negative. A review of theoretical and experimental works concerned with this
type of combustion is presented in [1]. In particular, theoretical analysis shows that in the absence of heat losses,
the maximum flame temperature Tyax and the reaction front velocity up, are related by the simple relation [2]
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where AT,q is the adiabatic temperature for the given gaseous mixture; un, is the reaction front wave velocity; uyy,
is the thermal-wave propagation velocity over the system without reactions.

Equation (1) relates two important parameters of the system, namely, Tpyax and upy,. It should be noted
that inaccuracy in one of them calculated within a certain approximate theory results in a calculation error in the
other. While for T,y this is an error in magnitude, for u,, this can even be an error in the direction of the wave
propagation.

The goal of the present work is to obtain an approximate analytical solution of the problem of filtration
combustion without using an infinitely narrow reaction zone or approximation of the Arrhenius reaction rate,
following Frank-Kamenetskii.

We consider the constituting equations that describe combustion waves {2 ]:
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which represent the most important physical processes, such as convective heat transfer in the gas, conductive
transfer in the porous skeleton, interphase heat transfer between the gas and the skeleton, and the combustion
reaction in the gas phase. In what follows, we consider only regimes that are characterized by high-intensity
interphase heat transfer (for example, with a substantial gas flow rate and a small average pore size of the inert
medium). Thus, assuming that @ » « and 7y = T5 = T and neglecting the thermal inertia of the gas, we can
correspondingly simplify Eqgs. (2)-(4) to
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Having made a changeover to a system of coordinates that moves with the combustion front velocity upy,
X =z — uryt, and assuming that uny << ug, the system of equations (5), (6) can be rewritten in the following form:
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(the last relation for the gas flow rate G follows from the mass flow continuity equation.)

Next, from physical considerations boundary conditions are chosen for the combustion wave:
x=—-oo:T'=O,T=T0,A=1; (10)
x=+w:T'=0,T=Tmax,A=0. (11)

Integration of (7) gives

© u, HG 12
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where the unknown constant B is determined from boundary conditions (10) and (11), respectively:
B= —41y-8C, x= - w; (13)
u
B:’"ITmax’ X = -+ o, (14)
Equating (13) and (14), we obtain a balance relation that coincides with (1):
(Tyax = To) & = HG . (15)
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For a numerical solution of system of equations (7) and (8) with boundary conditions (10) and (11), use
is made of some general properties of combustion processes, namely, the fact that because of a strong dependence
of the reaction rate on the temperature (relatively high values of the activation energy) and the pronounced
exothermic nature of the combustion reaction, chemical conversions can be neglected at temperatures that are much
lower than the maximum temperature attained in the flame. Because of this, for numerical calculation, at A=1, T
= To can be replaced by a certain higher temperature 7T_, at which the reaction does not take place (and
consequently, the fuel concentration does not change) in the aforementioned sense.

For the procedure of the numerical solution, Egs. (7) and (8) can be transformed using the dimensionless
concentration A (instead of x) as an independent variable and can be reduced to one equation that describes the
dependence of the temperature T as a function of the concentration A in the finite range of A: from 1 (the initial
mixture) to 0 (the reaction products) with the corresponding temperatures T = T_. and T = Tpax. In this case

T =T, . (16)
Using the expressions for T~ from (12) and A’ from (8), we obtain

. ugTexp(U/T) (z HG B) . a7

Ta= ToKA

Then, with the aid of (14) and (15), Eq. (17), which describes the relation T(A), can be reduced to the following
form:
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Equation (18) includes the unknown quantity & to be determined in the course of the solution. To do this, the
following iteration procedure is organized. An arbitrary value of « is chosen (from a permissible range of values)
and the Cauchy problem for (18) with the initial conditions A =1, T = T_ is solved. The calculated quantity T(0)
is compared with Tpgay from balance relation (15). Then, another value of & is chosen, and the cycle is repeated.
The iteration is carried out until 7(0) coincides with T,y with the required accuracy.

The choice of T— is not critical since, starting from a certain value, a subsequent decrease in 7'— has no
effect on the solution. However, the lower T_, the more accurate (i.e., with a substantially smaller step in A) the
calculation procedure near A = 1 need be. In the calculations T_ = 500 K was used; however, at T_ = 700 K the
results were the same.

An analysis of calculations for different relations of the parameters shows that the solution of Eq. (18)
always has the following properties:

1) the function exp (—U/T) is almost a linear function of A4;

2) a maximum reaction rate (or, according to (7), a maximum of A') is attained at different concentrations
A that are somewhat higher than 0.5.

Using property 1), an approximate solution is sought in the form

exp (— U/T) =¢; (1 — A), (19)
where c¢; is an unknown constant. Determining it from boundary condition (11), we have
exp (— U/T) = exp (— U/Tyy,,) (1 — A). (20)

That there is no identity in expression (20) for A = 1 can be explained physically by permissible neglect of the
reaction rate at T = T (see the explanation of the numerical calculation procedure given above).
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Fig. L. Plot of the function F(4) normalized to its integral mean value.
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It should be noted that this form of the solution automatically gives property 2). Indeed, we determine the

concentration and temperature that correspond to the maximum reaction rate. From the condition of the maximum
of the function A/T exp (—U/T), which is proportional 1o the reaction rate, we obtain

A=—"1 (21)
2-T /U

where 7" is the temperature corresponding to the concentration A*, which is determined from (20) as

= Tmax (22)
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Substitution of (22) into (21) gives an expression for A* from which it is clear that A* > 0.5:

. 1 (23)
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Then, for determination of T, use is made of property 1). To this end, (20) is directly substituted into
(18), which gives the following relation:

exp (— U/T) = exp (— U/Ty,,) (1 — A) F(A), (24)
where
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Equation (24) is very similar to (20): the only difference consists in the slightly varying function F(4). A plot of
this function, normalized on its integral mean value, is shown in Fig. 1. It is a constant quantity to within 2%. The
requirement on the value of this constant follows from the requirement of equality of expressions (20) and (24):

F(A)=1. (26)

It can be seen from Fig. 1 that to find the equation that determines Ty from (235) and (26), it is natural to take
the value of the function F(A4), at the point A = 0.5 since at this point F(A) coincides with its integral mean value.
Thus, the following equation for T,y follows from the condition F(0.5) = I:
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Fig. 2. Difference between Ty, (%) obtained from (27) and Tnzfa'f obtained
from asymptotic formula (29), following the Zel’dovich—Frank-
Kamenetskii’s theory, in dimensionless form (T, — Tf;f)/ Tmax for U =
15,640 K, K = 2.6-10% sec_l, and A = 2 W/ (m-K). Horizontal axis)
dimensionless parameter AT,4/ U; vertical axis) loglo((chZ)/ (AKpo))-
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The value of Tp,x determined from (27) coincides with results of numerical calculations with an error of < 1%, for
the parameters varying over wide ranges: G = 0.1-20 kg/ (m2-sec) and AT,4 = 300—-2000 K. Use of Tpay
determined from (27) in (20) gives a temperature function 7'(A) that likewise coincides with the numerical solution
with an error of < 19;.

It should also be emphasized that calculations of Ty, from (27) provide much higher accuracy than the
zero-order asymptotic formula (see, for example, [3]). Since problem (7), (8) with boundary conditions (10), (11)
is mathematically equivalent to the problem of determination of the normal propagation velocity w in the
Zel’dovich—Frank-Kamenetskii theory of laminar flames, results of this theory [4] can be used directly:
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To use this approach in the single-temperature problem of filtration combustion, it is sufficient to substitute &/ cg
for wpg in Eq. (28). Then, using (13), the following formula can be obtained for determination of Tyay:
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Calculations using Eq. (29) show that the accuracy of the calculation of Ty, is within 20% relative to the numerical
results from (18) for a substantial variation in the parameters of the problem: G = 0.1-20 kg/ (m?-sec), AT,q =
300-2000 K, and U = 13- 103-17-10° K. Figure 2 shows a comparison of values of T,y obtained from (27) with
values of it calculated from (29).

In conclusion, it should be noted that Eq. (27), from which, using relation (15), it is possible to find the
combustion front propagation velocity, can be used to locate the steady-state combustion zone (the wave velocity
ury = 0) in the quasi-one-dimensional case of a tube with a variable cross section. In this case the position of the
reaction zone corresponds to the cross-sectional area Sy in which the value of the gas flow rate G= (pw) g corresponds
to a zero combustion wave propagation velocity for a specified mass flow rate m. Thus, for the case Tpax =
To + ATag4, from the continuity equation for the gas mass m = GS; and Eq. (27) an expression follows that
determines the cross-sectional area S in which the combustion reaction zone is localized:
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NOTATION

T, temperature; ¢, specific heat; p, density; «, bulk interphase heat transfer coefficient; A, thermal
conductivity; A, dimensionless fuel concentration; U, activation energy; K, preexponential factor; ug, gas filtration
velocity at the ambient temperature Ty.
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