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Within the one-dimensional  single-temperature model,  approximate analytical expressions are obtained for  

determination o f  the heat wave propagation velocity and  the m a x i m u m  temperature at the combust ion front. 

The present results are compared with the results o f  the Ze~ dov ich -Frank-Kamene t sk i i  asymptotic theory. 

When a combustible-gas-air mixture filters through an inert porous medium, self-sustaining wave regimes 

can be observed under certain conditions. To initiate this type of process, it is sufficient to create a narrow high- 

temperature zone in the porous medium with the aid of an external source (for example, an electric heater) switched 

on for a time. Subsequently, in the porous medium temperature profiles are formed that propagate at a constant 

velocity that can be both positive and negative. A review of theoretical and experimental works concerned with this 

type of combustion is presented in [1 ]. In particular, theoretical analysis shows that in the absence of heat losses, 

the maximum flame temperature Tmax and the reaction front velocity urw are related by the simple relation [2 ] 

a G d  
Tmax = T O + - - ,  (1) 

Urw 
1 - -  - -  

Utw 

where ATad is the adiabatic temperature for the given gaseous mixture; Urw is the reaction front wave velocity; Utw 

is the thermal-wave propagation velocity over the system without reactions. 

Equation (1) relates two important parameters of the system, namely, Tmax and Urw. It should be noted 
that inaccuracy in one of them calculated within a certain approximate theory results in a calculation error in the 

other. While for Tmax this is an error in magnitude, for Urw this can even be an error in the direction of the wave 

propagation. 

The goal of the present work is to obtain an approximate analytical solution of the problem of filtration 

combustion without using an infinitely narrow reaction zone or approximation of the A_rrhenius reaction rate, 

following Frank-Kamenetskii. 

We consider the constituting equations that describe combustion waves [2 ]: 

OT~ = _ 
(Cp)g 0-~ + Ug (Cp)g Oz ct (Tg -- Ts) + H p A K  exp ( -  U/Tg)  , (2) 

OT s 02Ts 
(cp)  s = - - W  + a ( r g  - G ) ,  

Ot Oz 

(3) 

OA OA 
0-7 + Ug -~z = - A K  exp ( -  U / Tg )  , (4) 
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which represent  the most  impor tan t  physical  processes,  such as convective heat  t r ans fe r  in the  gas,  conduct ive 

t rans fe r  in the porous skeleton,  in terphase  heat  t r ans fe r  between the gas and  the skeleton,  a n d  the  combus t ion  

reaction in the gas  phase.  In what  follows, we consider  only  regimes that  a re  charac te r ized  by  h igh- in tens i ty  

in te rphase  heat  t r ans fe r  (for example ,  with a substant ia l  gas flow rate  and  a small  average  pore  size of the  inert  

medium) .  Thus ,  a ssuming  that  a --, oo and  Tg = T s = T and  neglecting the the rmal  iner t ia  of  the  gas,  we can 

correspondingly  s implify Eqs. (2)-(4)  to 

(cp) s OT + Ug (cp)g 07" = )t s ~O2T + H p A K  exp  (--  U / T )  (5)  

Ot Oz Oz 2 

OA OA 
0--~ + ug ~ z  = - A K  exp ( -  U / 7 " )  . 

(6) 

Having m a d e  a changeover  to a sys tem of coordinates  that  moves with the combus t ion  f ront  velocity Urw, 

x = z - urwt, and  assuming  that  Urw << ug, the sys tem of equations (5), (6) can be rewri t ten  in the following form: 

i 

u0T , 
A = - A K  exp ( -  U / T ) ,  (8) 

To 

with the definit ions 

"ff = CgG 1 - , Utw = (cp) s , G = (pu)g = pOuo 

(the last relation for the gas flow rate  G follows from the mass  flow cont inui ty  equation.)  

Next ,  f rom physical  considerat ions boundary  conditions are  chosen for the combust ion  wave: 

t 

x = -  oo: T = 0 ,  T = T 0 ,  A =  1;  

(9) 

(lO) 

Integrat ion of (7) gives 

x =  + oo: T - - -0 ,  T =  Tmax, A = 0 .  

, H c  
T -- T = - - , A - - A + B  , 

where  the unknown constant  B is de te rmined  f rom boundary  condit ions (10) and  ( l  l ) ,  respectively:  

H G  
B = - ~ T o - - - , j ~ - ,  x =  - o~; 

(11) 

(12) 

03) 

7, 
B =  -- ~-Tmax,  x =  + 00 

Equating (13) and  (14), we obtain a ba lance  relation that  coincides with (1): 

(Tma x - TO) ~" = H G .  

(14) 

(15) 
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For a numerical  solution of system of equations (7) and (8) with boundary  conditions (10) and  (11), use 

is made of some general  properties of combustion processes, namely,  the fact that  because of a s t rong dependence  

of the reaction rate on the tempera ture  (relatively high values of the activation energy)  and  the p ronounced  

exothermic na ture  of the combustion reaction, chemical conversions can be neglected at tempera tures  that  a re  much 

lower than the maximum tempera ture  a t ta ined in the flame. Because of this, for numerical  calculation, at  A --- 1, T 

= TO can be  replaced  by  a cer ta in  h igher  t empera tu re  T_ ,  at which the react ion does not take place (and 

consequently,  the fuel concentrat ion does not change) in the aforement ioned sense.  

For  the procedure  of the numerical  solution, Eqs. (7) and (8) can be t ransformed using the dimensionless  

concentrat ion A (instead of x) as an independent  variable and can be reduced to one  equation that  descr ibes  the 

dependence  of the tempera ture  T as a function of the concentrat ion A in the finite range of A: from 1 ( the initial 

mixture) to 0 (the reaction products) with the corresponding tempera tures  T = T_ and  T = Tmax. In this case 

f t * 

T = TAA . 

Using the expressions for T' from (12) and A' from (8), we obtain 

TA= uOTexp(U/T)  ( ~  HG ) 
- 7---OK ~ T + T A + B  . 

(16) 

(17) 

Then,  with the aid of (14) and (15), Eq. (17), which describes the relation T(A),  can be reduced  to the following 

form: 

dT u O T e x p ( U / T ) (  _ T -ATmax) (18) 
dA - 2ToK HG + u . 

Equation (18) includes the unknown quanti ty ff to be de termined in the course of the solution. To do this, the 

following iteration procedure  is organized. An arb i t ra ry  value of ~" is chosen (from a permissible range  of values) 

and the Cauchy problem for (18) with the initial conditions A = 1, T = T_ is solved. Th e  calculated quant i ty  T(0)  

is compared with Tmax from balance relation (15). Then ,  ano ther  value of ~" is chosen,  and the cycle is repeated.  

The  iteration is carried out until T(0) coincides with Tmax with the required accuracy. 

The  choice of T_ is not critical since, starting from a certain value, a subsequent  decrease  in T_  has no 

effect on the solution. However,  the lower T_,  the more accurate (i.e., with a substant ial ly smaller  step in A) the 

calculation procedure near  A = 1 need be. In the calculations T_ = 500 K was used; however, at T_ = 700 K the 

results were the same. 
An analysis of calculations for different relations of the parameters  shows that  the  solution of Eq. (18) 

always has the following properties: 

1) the function exp ( - U / T )  is almost a linear function of A; 

2) a maximum reaction rate (or, according to (7), a maximum of A') is a t ta ined at different  concentra t ions  

A that are somewhat higher  than 0.5. 

Using property 1), an approximate solution is sought in the form 

exp ( -  U/T) = c 1 (1 - A ) ,  (19) 

where Cl is an unknown constant.  Determining it from boundary  condition (11), we have 

exp ( -  U/T) = exp ( -  U/Tmax) ( l  -- A) .  (20) 

That  there is no identi ty in expression (20) for A = 1 can be explained physically by permissible neglect of the 

reaction rate at T --- TO (see the explanation of the numerical calculation procedure given above).  
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Fig. 1. Plot of the funct ion F(A) normal ized  to its integral  me a n  value. 
1 

Horizontal  axis) A; vertical axis) F ( A ) / f  F(A)dA 
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It should be noted that  this form of the solution automatical ly gives proper ty  2). Indeed ,  we de te rmine  the 

concentrat ion and  tempera ture  that  correspond to the maximum reaction rate.  From the condi t ion of the max imum 

of the function A / T  exp ( - U / T ) ,  which is proportional  to the reaction rate,  we obtain 

A* - -  1 (21) 
2 - T*/U ' 

where 7"* is the tempera ture  corresponding to the concentrat ion A*, which is de te rmined  from (20) as 

T* = Tmax (22) 
Tmax 

2 - - - ~ l n ( 1  - a * )  

Substitution of (22) into (21) gives an expression for A* from which it is clear that A* > 0.5: 

A* = 1 (23) 
T,,,ax ( T,..,, ) -~"  

2---U---  l - ---0-- In (1 - A* ) 

Then ,  for determinat ion of Tma x, use is made  of property 1). To  this end,  (20) is direct ly  subst i tu ted into 

(18), which gives the following relation: 

exp ( -  U/T)  = exp ( -  U/Tmax) ( l  - A) F (A) ,  (24) 

where 

l ' ) ) F(A) = 2p OTOKTma x 1 + A (1  - To/Tmax) -- 1 In(1  - A )  . 

Equation (24) is very similar to (20): the only difference consists in the slightly varying funct ion F(A). A plot of 

this function, normalized on its integral mean value, is shown in Fig. 1. It is a constant  quant i ty  to within 2 ~o. T h e  

requirement  on the value of this constant  follows from the requirement  of equality of express ions  (20) and  (24): 

F (A) = 1.  (26) 

It can be seen from Fig. 1 that to find the equation that determines Tma x from (25) and  (26), it is natural  to take 

the value of the function F(A), at the point A = 0.5 since at this point F(A) coincides with its integral  mean  value. 

Thus,  the following equation for Tma x follows from the condition F(0.5) = 1: 
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Fig. 2. Difference between Tmax (%) obtained from (27) and ~ l d  obtained 
f rom asympto t i c  f o rmu la  (29) ,  f o l l ow ing  the Z e l ' d o v i c h - F r a n k -  
Kamenetskii's theory, in dimensionless form (Tmax - ~laxd)/Tmax for U = 
15,640 K, K = 2.6.108 sec -1, and 2 == 2 W / ( m - K ) .  Horizontal axis) 

parameter ATad/U; vertical axis) lOglO((CgG2)/(ZKpo)). dimensionless 

exp ( -  U/Tmax) = 1 - (--~mm~'-- 1 + . 3tK PoToTma x U TO) ~ m ~  

The  value of Tmax de termined  from (27) coincides with results of numerical  calculations with an er ror  of < 1 ~ for 

the  paramete rs  vary ing  over wide ranges:  G = 0 . 1 - 2 0  kg / (m2-sec )  a n d  ATao -- 3 0 0 - 2 0 0 0  K. Use  of Tmax 

determined from (27) in (20) gives a tempera ture  function T(A) that likewise coincides with the numerical  solution 

with an error  of < 1%. 

It should also be emphasized that  calculations of Tmax from (27) provide much h igher  accuracy than the 

zero-order  asymptot ic  formula (see, for example,  [3]).  Since problem (7), (8) with boundary  condit ions (10), (11) 

is ma themat i ca l ly  equivalent  to the problem of de t e rmina t ion  of the normal  p ropaga t ion  veloci ty to in t he  

Ze l ' dov ich -Frank-Kamene t sk i i  theory of laminar  flames, results of this theory  [4 ] can be used directly: 

2 2 22KPoToT3max exp ( -  U/T)  

p g  = cgV 2 ( rmax  -- TO) 2 
(28) 

To use this approach in the s ingle- temperature  problem of filtration combustion, it is sufficient to subst i tute  "ff/Cg 
for topg in Eq. (28). Then ,  using (15), the following formula can be obta ined for de terminat ion  of Tmax: 

2 (29) 

exp ( -  U/Tmax) = 22cgK PoToT3max. 

Calculations using Eq. (29) show that the accuracy of the calculation of Tmax is within 20% relative to the numerical  

results from (18) for a substantial  variation in the parameters  of the problem: G = 0 . 1 - 2 0  kg / (m2-sec ) ,  ATad = 
300--2000 K, and  U = 13. 103-17  • 103 K. Figure 2 shows a comparison of values of Tma x obta ined from (27) with 

values of it calculated from (29). 

In conclusion, it should be noted that Eq. (27), from which, using relation (15), it is possible to find the 

combustion front  propagation velocity, can be used to locate the s teady-s ta te  combust ion zone (the wave velocity 

Urw = 0) in the quasi-one-dimensional  case of a tube with a variable cross section. In this case the position of the 

reaction zone corresponds to the cross-sectional area $1 in which the value of the gas flow rate G = (pu)g corresponds  

to a zero combust ion wave propagation velocity for a specified mass flow rate m. Thus ,  for  the case Tmax = 

TO + ATaa, from the cont inui ty  equation for the gas mass m = GS1 and Eq. (27) an expression follows that  

determines the cross-sectional area S1 in which the combustion reaction zone is localized: 
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[exp..p(U/(To+__ ATad)) HU ( (T l + ATad ) In 2 
S 1 = m [ 2KPoTo(T  0+ ATad ) 1 -- UATa d (2T0+ ATad)) ] 

1/2 
(3o) 

N O T A T I O N  

T, temperature; c, specific heat; p, density; a, bulk interphase heat transfer coefficient; /l, thermal 
conductivity; A, dimensionless fuel concentration; U, activation energy; K, preexponential factor; u0, gas filtration 
velocity at the ambient temperature T O . 
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